
Multiple Indicator Stationary Time
Series Models

Stephen A. Sivo
Educational Research, Technology & Leadership

University of Central Florida

This article is intended to complement previous research (Sivo, 1997; Sivo &
Willson, 1998, in press) by discussing the propriety and practical advantages of spec-
ifying multivariate time series models in the context of structural equation modeling
for time series and longitudinal panel data. Three practical considerations motivated
this article. Unlike Marsh (1993), Sivo and Willson (2000) did not offer multiple in-
dicator (latent order) equivalents to their autoregressive (AR), moving average (MA),
and autoregressive-moving average (ARMA) models. Moreover, such models have
yet to be discussed, despite Marsh’s (1993) advocacy for multiple indicator models in
general. Further motivating multiple indicator extensions of the AR, MA, and
ARMA equivalent models is the fact that longitudinal studies often collect data on
more than 1 related variable per occasion. Such multiple indicator models capitalize
on 1 of the chief analytical advantages of structural equation modeling in that mea-
surement error may be estimated directly.

The use of structural equation modeling (SEM) to evaluate longitudinal panel data
is becoming increasingly pervasive, with a wide variety of investigations focusing
on either stationary or nonstationary multiwave models. Among the general class
of nonstationary models specified to explain the dynamics within longitudinal
data, growth curve models have received a fair amount of attention (see Willett &
Sayer, 1996). Such models may be used to investigate what accounts for individual
changes over time.

Conversely, stationary models are used to investigate why repeated observations
of the same measure over time fail to correlate perfectly. Among stationary models
specified to depict longitudinal patterns of consistency, simplex and quasi-simplex
models historically have dominated the literature. Indeed, very few alternatives to
the traditionally posited simplex and quasi-simplex models have been investigated
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and made available. In reaction to the paucity of alternative models, Marsh (1993)
extended the number of models to include the one-factor model (related to the classi-
cal true score model), its multiple indicator equivalent, and the multiple indicator
equivalents of both the simplex and quasi-simplex models. Expanding yet further
the number of stationary models available for panel data, Sivo (1997) and Sivo and
Willson (in press) studied and recommended three time series equivalent models,
namely autoregressive (AR), moving average (MA) and autoregressive-moving av-
erage (ARMA) models. Demand for the MA and ARMA models, in particular, was
rooted in the widely reported finding of correlated errors in longitudinal panel data
(e.g., Jöreskog, 1979, 1981; Jöreskog & Sörbom 1977, 1989; Marsh, 1993; Marsh &
Grayson, 1994; Rogosa, 1979) and the virtual absence of such models specifically
designed for panel data. Although in recent years, some researchers have demon-
strated how to use SEM to fit time series models to time series data (e.g.,
Hershberger,Corneal,&Molenaar,1994;Hershberger,Molenaar,&Corneal, 1996;
vanBuuren,1997), fewresearchershavenotablyapplied timeseriesmethodology to
panel data in the same manner. A discussion of the use of multiple indicator time se-
ries models for both time series and longitudinal panel data is needed.

Three practical considerations motivated this article. Unlike Marsh (1993), Sivo
and Willson (2000) did not offer multiple indicator (latent order) equivalents to their
AR, MA, and ARMA models. Moreover, such models have yet to be discussed, de-
spite Marsh’s (1993) advocacy for multiple indicator models in general. Further mo-
tivating multiple indicator extensions of the AR, MA, and ARMA equivalent models
is the fact that longitudinal studies often collect data on more than one related vari-
able per occasion. Indeed, this condition does not ipso facto call for a multiple indi-
cator model (e.g., the time series process for each manifest variable measured over
multiple occasions might be retained although alternatively integrated together into
one full model). Nonetheless, the availability of such models, once established, of-
fers researchers alternative models for consideration. Arguably, time-dependent la-
tent factors and errors have the potential to evidence stochastic effects similar to
those found among longitudinally assessed manifest variables. In fact, Bollen (1989)
indicated that although it is traditionally assumed that latent errors (ζ) are
nonautocorrelated, corrections for autocorrelated latent errors are common among
econometric models and rarely studied for latent variable structural models. Given
the widely recognized feasibility of autocorrelated latent factor scores, as repre-
sented by the quasi-simplex model (see Jöreskog and Sörbom, 1989), its second-or-
der extension (see Marsh, 1993), or an instance of the dynamic shock-error model
(Maravall & Aigner, 1977), it is surprising that no counterpart for autocorrelated la-
tent factor errors exists. If autocorrelation among factor scores has been found to ex-
ist in longitudinal panel data, the possibility of autocorrelated latent errors should be
considered as a counterpart. Furthermore, multiple indicator models capitalize on
one of the chief analytical advantages of SEM in that measurement error may be esti-
mated directly. This feature of SEM has the potential of greatly improving on classi-
cal time series modeling.
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This article was written to expand the base of available stationary time series
models for time series and panel data by presenting the specification of multiple
indicator equivalents within the context of SEM. A general review of time series
models is therefore warranted.

Time Series Models

Autocorrelation among serially observed scores (i.e., times series data) is a prob-
lematic condition that potentially biases parameter estimation, although it may be
controlled through explicit modeling. Stationary times series data may be modeled
for two stochastic processes: AR and MA (Box & Jenkins, 1976). AR models rep-
resent the most recent observation in a series as a function of previous observations
within the same series. The most general univariate case is represented by

yt = φ1 yt–1 + φ2 yt–2 + … + φp yt–p + εt

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t)
deviated from the original level y0 of the series, ε denotes error associated with a
givenoccasion (t), andφ(–1<φ<1)denotesacovarianceamong temporallyordered
scores at some lag (e.g., t – 1 = a lag of 1, t – 2 = a lag of 2). The autocorrelation func-
tion of an AR process has the characteristic of tapering off exponentially after the lag
of the process. The multivariate counterpart of this general case is

yt = Φ1 yt–1 + Φ2 yt–2 + … + Φp yt–p + εt

where the parameters are contained within the Φ matrixes. Following from the gen-
eral univariate case, an AR model with a lag one relationship (i.e., AR1) is repre-
sented by

yt = φ1 yt–1 + εt

and has the following multivariate counterpart

yt = Φ1 yt–1 + εt

(see Appendix). The multivariate AR1 model is a restricted form of the simplex
model (Willson, 1995).

Unlike AR models, MA models represent the most recent observation in a se-
ries as a function of autocorrelated errors among earlier observations. The most
general univariate case is represented by

yt = εt + θ1 εt–1 + θ2 εt–2 + … + θq εt–q

where t = 1 to T occasions, yt denotes an observed score taken on some occasion (t) de-
viatedfromtheoriginal levely0 of theseries,εdenoteserrorassociatedwithagivenoc-
casion (t), andθ(–1<θ<1)denotesacovarianceamongerrorsat some lag (e.g., t–1=
a lag of 1, t – 2 = a lag of 2). By extension, the multivariate form of this model is

yt = εt + θ1 εt–1 + θ2 εt–2 + … + θq εt–q
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where the parameters are contained within the θ matrixes. Following from the gen-
eral univariate case, an MA model with a lag one relationship (i.e., MA1) is repre-
sented by

yt = εt + ε1 εt–1

with the multivariate counterpart being

yt = εt + θ1 εt–1

(see Appendix). An MA1 model would have the error for the first occasion correlate
with the second occasion error, and the second occasion error correlate with the third
occasion error. However, the first occasion error would not be correlated with the
thirdoccasionerror.This ispossiblewhenauniquecomponent is introducedoneach
occasion,acomponent thatcovarieswithasubsequenterrorbut is independentof the
previous error. Each unique component, jointly with the previous error,
codetermines the following error in the series. The net effect of an MA1 process is
that theautocorrelation functioncutsoff immediatelyafter lag1.Put simply,all error
covariances beyond the first lag will be zero. Only the errors on temporally adjacent
occasions possess a nonzero covariance and constitute the MA1 lag.

When both AR and MA processes are present in the same data, an ARMA
model may best represent the variation in the data. The univariate form of the most
general case of the ARMA model is

yt = φ1 yt–1 + φ2 yt–2 + … + φp yt–p + θ1 εt–1 + θ2 εt–2 + … + θq εt–q + εt

and the multivariate form is

yt = Φ1 yt–1 + Φ2 yt–2 + … + Φp yt–p + θ1 εt–1 + θ2 εt–2 + … + θq εt–q + εt

(see Appendix). The ARMA model with a lag one relationship for both its AR and
MA processes is represented by

yt = φ1 yt–1 + εt + θ1 εt–1

and its multivariate form is

yt = Φ1 yt–1 + εt + θ1 εt–1

Harvey (1981) unequivocally pointed out that a multivariate time series
model is founded on a priori assumptions inasmuch as it suggests that the vari-
ables under study are determined jointly. From Harvey’s perspective, the idea of
modeling individual trajectories in addition to the multivariate trajectory would
amount to a loss in predictive efficiency, especially when the multivariate time
series model is specified correctly. This point cannot be understated and has
great relevance to the contextual scheme of this article because the approach to
be advanced will not consider or advocate the use of univariate time series mod-
els for individual trajectories. A limited information approach, modeling each
univariate process, is only strategically meritorious when uncertainty exists
about the model as a whole (Harvey, 1981). In such a case, SEM would be un-
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warranted, given that this approach assumes that an asserted model is grounded
theoretically in the first place.

On a more practical note, it should be pointed out that, as Hershberger et al.
(1996) discussed, SAS IML may be used to create the autocovariance and block
toeplitz matrixes necessary so that the multiple indicator SEM specified time se-
ries models may be fit to the multivariate time series covariance data.

The Relation Between Time Series and Longitudinal Panel Designs

Aclearconnectionhasbeendelineatedbetween timeseriesdesignsand longitudinal
panel designs in which the same sample of cases is observed on multiple occasions.
Rogosa (1979) indicated that “[longitudinal] panel designs are a combination of
time-series and cross-sectional, with measurements obtained on a cross-section
(wave) at each time point” (p. 275). According to Fredericksen and Rotondo (1979),
“When a time series model is employed [with] … suitable techniques for parameter
estimation and hypothesis testing, the result is a powerful methodology for the con-
duct of longitudinal research” (p. 112). To be sure, longitudinal data may be treated
similarly to time series, when (a) the same group of individuals over occasions are
measured (i.e., panel study), (b) the occasions for repeated measurements are equi-
distant in time, and (c) enough measurement occasions over time are included. Re-
garding the latter condition, Box and Jenkins (1976) indicated that when modeling
individual trajectories, at least 50 observations are needed for unambiguous model
identification. Although, if a priori models can be assumed (e.g., AR1 or MA1), far
fewer observations are needed. Sivo and Willson (1998) indicated that as few as four
time points are reasonable for fitting AR1 or MA1 models to large-sample panel
data, wherein individual performances may be considered replications and cross
time covariances are thereby more stable. Five or six occasions at minimum are rec-
ommended when testing ARMA (1,1) models.

Fitting Time Series Models to Longitudinal Panel Data

Sivo and Willson (2000) defined the AR1 model for longitudinal panel data in a
manner consistent with time series methodology.

yt = β21 yt–1 + εt, t = 1 to T occasions

The equations that define the multiple indicator AR1 model will resemble the sin-
gle indicator AR1 model, though the AR process is represented among latent fac-
tors instead of manifest variables.

yi = λ21 ηt + εi, i = 1 to p variables

ηt = β21 ηt–1 + ζt, t = 1 to T occasions
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When specifying a model to represent an autoregressive process among six la-
tent factors, the matrix equation for the factor relations would be

(see Appendix). This model resembles the quasi-simplex model (see Jöreskog &
Sörbom, 1989, p. 182), although two differences exist: (a) Each factor determines
multiple indicators, and (b) the betas are constrained to equal the first beta in the
series (see Figure 1).

The MA1 model specified for longitudinal panel data also assumes a form con-
sistent with time series methodology.

yt = θ21 εt–1 + εt, t = 1 to T occasions

Because the theta epsilon matrix is symmetrical and the MA1 model requires an
asymmetrical specification among the lag 1 errors, it is useful to define the model
in a manner similar to van Buuren’s (1997) approach. Van Buuren discussed the
use of SEM to estimate univariate time series, and so his general model for a
univariate MA process represents the relation between the original series and each
of the hypothesized lags for the series. To specify the asymmetrical relation be-
tween each lag and the origin, van Buuren defined the errors as factors that are re-
lated to the order of some lag. His MA1 model is specified by the following CALIS
equations:

v0 = f0 + theta1 f1

v1 = f1 + theta1 f2

which may be re-expressed as

y0 = λ1 η1 + η0

y1 = λ 1 η2 + η1

His use of the lambda matrix allows him to make the asymmetrical specification of
a lagged relation among the errors, a relation that could not have been asymmetri-
cally specified within a theta epsilon matrix. Similarly, the MA1 longitudinal
model may be expressed as

yt = λ21 ηt–1 + ηt, t = 1 to T occasions
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In this case, errors across time may be said to correlate at some lag. Again, this re-
tains the original form of the MA1 time series model discussed previously:

yt = εt + θ1 εt–1

The equations that define the multiple-indicator MA1 model will resemble the
single-indicator MA1 model, although the MA process is represented among la-
tent factors instead of manifest variables (see Appendix).

yi = λit ηt + εi, i = 1 to p variables

ηt = ψ21 ζt–1 + ζt, t = 1 to T occasions

Re-expressing the multiple indicator MA process in terms of factors yields

ηt = γ21 ξt–1 + ξt, t = 1 to T occasions

Refer to Figure 2 for a diagram of this model. Although the pure multiple indicator
MA model, as specified, is theoretically accurate, it may not seem to make any
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FIGURE 1 Multiple indicator autoregressive (AR1) model.

FIGURE 2 Multiple indicator moving average (MA1) model.



practical sense. If a set of manifest variables is determined by a common factor on
each of several occasions, it is challenging to conceive of how an MA process
alone could explain the relatedness among the first-order factors. If an MA process
alone is responsible for the relation among the factors, then how could each factor
determine the conceptually related manifest variables in practice? Consequently,
identifying an MA process present within some lag of the latent errors may be
more likely under the condition that the latent factors are otherwise related as well.
This is not too troubling when it is recalled that the MA process is but a nuisance
condition. As such, one would want to model explicitly an MA1 process as a form
of control to remove the bias that the process would otherwise introduce into pa-
rameter estimates for a given model, say, a one-factor model.

yi = λit ηt + εi, i = 1 to p variables

ηt = γt1 ξ1 + ψ21 ζt–1 + ζt, t = 1 to T occasions

which may also be expressed as

ηt = γt T+1 ξT+1 + γ21 ξt–1 + ξt, t = 1 to T occasions

If the same variables were measured on six occasions, the multiple indicator MA1
process thought to theoretically relate temporally adjacent latent errors would be
specified by the following matrix equation:

Note that the gammas for the second order-factor are also specified in Γ (see
Figure 3). Although extraneous to the intent of the present investigation, this point
is demonstrated as one practical possibility.

The ARMA (1,1) model specified for longitudinal panel data is expressed by
the following equation:

yt = β1 yt–1 + εt – θ1 εt–1, t = 1 to T occasions

whereas the multiple indicator equivalent is defined as

yi = λ21 ηt + εi, i = 1 to p variables

ηt = β21 ηt–1 + ζt + ψ21 ζt–1, t = 1 to T occasions

Re-expressing the multiple indicator MA process in terms of factors yields
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ηt = β21 ηt–1 + ξt + γ21 ξt–1, t = 1 to T occasions

which for a six-occasion situation may be expressed by the following matrix
equation:

(see Appendix).
Refer to Figure 4 for a diagram of this model.
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FIGURE 3 Multiple indicator moving average (MA1) model with second-order factor.
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CONCLUSION

This article described why fitting multiple indicator time series models to time
series and panel data within the context of structural equation modeling is
proper, practicable, and useful. With regard to modeling time series data, the
multiple indicator model specification improves on classical time series analysis
in that it allows measurement errors to be directly modeled, a key feature that
has made SEM more broadly a strategically useful analytical approach. With re-
gard to modeling panel data, the multiple indicator model specification improves
on the work of Sivo and Willson (2000) in that it extends the base of plausible
stationary models recommended for certain types of panel data. Finally, this arti-
cle demonstrates how multiple indicator time series models may be specified by
using SAS’s PROC CALIS.
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APPENDIX

Autoregressive (AR) Program

PROC CALIS DATA=P COV ALL;
TITLE ‘AR MODEL: MULTIPLE INDICATOR FORM’;

LINEQS
I1T1 = LY11 F1+E1, I2T1 = LY21 F1+E2, I3T1 = LY31 F1+E3,
I4T1 = LY41 F1+E4, I5T1 = LY51 F1+E5, I6T1 = LY61 F1+E6,
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I1T2 = LY11 F2+E7, I2T2 = LY21 F2+E8, I3T2 = LY31 F2+E9,
I4T2 = LY41 F2+E10, I5T2 = LY51 F2+E11, I6T2 = LY61 F2+E12,
I1T3 = LY11 F3+E13, I2T3 = LY21 F3+E14, I3T3 = LY31 F3+E15,
I4T3 = LY41 F3+E16, I5T3 = LY51 F3+E17, I6T3 = LY61 F3+E18,
I1T4 = LY11 F4+E19, I2T4 = LY21 F4+E20, I3T4 = LY31 F4+E21,
I4T4 = LY41 F4+E22, I5T4 = LY51 F4+E23, I6T4 = LY61 F4+E24,
I1T5 = LY11 F5+E25, I2T5 = LY21 F5+E26, I3T5 = LY31 F5+E27,
I4T5 = LY41 F5+E28, I5T5 = LY51 F5+E29, I6T5 = LY61 F5+E30,
I1T6 = LY11 F6+E31, I2T6 = LY21 F6+E32, I3T6 = LY31 F6+E33,
I4T6 = LY41 F6+E34, I5T6 = LY51 F6+E35, I6T6 = LY61 F6+E36,

F2 = ARlag1 F1+D1,
F3 = ARlag1 F2+D2,
F4 = ARlag1 F3+D3,
F5 = ARlag1 F4+D4,
F6 = ARlag1 F5+D5;

STD
e1-e36=ManErr1-ManErr36, D1-D5=ZetaErr1-ZetaErr5, F1=1;

VAR
I1T1 I2T1 I3T1 I4T1 I5T1 I6T1
I1T2 I2T2 I3T2 I4T2 I5T2 I6T2
I1T3 I2T3 I3T3 I4T3 I5T3 I6T3
I1T4 I2T4 I3T4 I4T4 I5T4 I6T4
I1T5 I2T5 I3T5 I4T5 I5T5 I6T5
I1T6 I2T6 I3T6 I4T6 I5T6 I6T6;

Moving-Average (MA) Program

PROC CALIS DATA=P COV ALL;
TITLE ‘MA MODEL: MULTIPLE INDICATOR FORM’;

LINEQS
I1T1 = LY11 F1+E1, I2T1 = LY21 F1+E2, I3T1 = LY31 F1+E3,
I4T1 = LY41 F1+E4, I5T1 = LY51 F1+E5, I6T1 = LY61 F1+E6,
I1T2 = LY12 F2+E7, I2T2 = LY22 F2+E8, I3T2 = LY32 F2+E9,
I4T2 = LY42 F2+E10, I5T2 = LY52 F2+E11, I6T2 = LY62 F2+E12,
I1T3 = LY13 F3+E13, I2T3 = LY23 F3+E14, I3T3 = LY33 F3+E15,
I4T3 = LY43 F3+E16, I5T3 = LY53 F3+E17, I6T3 = LY63 F3+E18,
I1T4 = LY14 F4+E19, I2T4 = LY24 F4+E20, I3T4 = LY34 F4+E21,
I4T4 = LY44 F4+E22, I5T4 = LY54 F4+E23, I6T4 = LY64 F4+E24,
I1T5 = LY15 F5+E25, I2T5 = LY25 F5+E26, I3T5 = LY35 F5+E27,
I4T5 = LY45 F5+E28, I5T5 = LY55 F5+E29, I6T5 = LY65 F5+E30,
I1T6 = LY16 F6+E31, I2T6 = LY26 F6+E32, I3T6 = LY36 F6+E33,
I4T6 = LY46 F6+E34, I5T6 = LY56 F6+E35, I6T6 = LY66 F6+E36,
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F1 = F7,
F2 = MAlag1 F7 + F8,
F3 = MAlag1 F8 + F9,
F4 = MAlag1 F9 + F10,
F5 = MAlag1 F10 + F11,
F6 = MAlag1 F11 + F12;

STD
e1-e36=ManErr1-ManErr36, F7-F12=6*1;

VAR
I1T1 I2T1 I3T1 I4T1 I5T1 I6T1
I1T2 I2T2 I3T2 I4T2 I5T2 I6T2
I1T3 I2T3 I3T3 I4T3 I5T3 I6T3
I1T4 I2T4 I3T4 I4T4 I5T4 I6T4
I1T5 I2T5 I3T5 I4T5 I5T5 I6T5
I1T6 I2T6 I3T6 I4T6 I5T6 I6T6;

Autoregressive Moving-Average (ARMA) Program

PROC CALIS DATA=P COV ALL;
TITLE ‘ARMA MODEL: MULTIPLE INDICATOR FORM’;

LINEQS
I1T1 = LY11 F1+E1, I2T1 = LY21 F1+E2, I3T1 = LY31 F1+E3,
I4T1 = LY41 F1+E4, I5T1 = LY51 F1+E5, I6T1 = LY61 F1+E6,
I1T2 = LY11 F2+E7, I2T2 = LY21 F2+E8, I3T2 = LY31 F2+E9,
I4T2 = LY41 F2+E10, I5T2 = LY51 F2+E11, I6T2 = LY61 F2+E12,
I1T3 = LY11 F3+E13, I2T3 = LY21 F3+E14, I3T3 = LY31 F3+E15,
I4T3 = LY41 F3+E16, I5T3 = LY51 F3+E17, I6T3 = LY61 F3+E18,
I1T4 = LY11 F4+E19, I2T4 = LY21 F4+E20, I3T4 = LY31 F4+E21,
I4T4 = LY41 F4+E22, I5T4 = LY51 F4+E23, I6T4 = LY61 F4+E24,
I1T5 = LY11 F5+E25, I2T5 = LY21 F5+E26, I3T5 = LY31 F5+E27,
I4T5 = LY41 F5+E28, I5T5 = LY51 F5+E29, I6T5 = LY61 F5+E30,
I1T6 = LY11 F6+E31, I2T6 = LY21 F6+E32, I3T6 = LY31 F6+E33,
I4T6 = LY41 F6+E34, I5T6 = LY51 F6+E35, I6T6 = LY61 F6+E36,

F1 = F7,
F2 = ARLag1 F1 + F8 + MAlag1 F7 ,
F3 = ARLag1 F2 + F9 + MAlag1 F8 ,
F4 = ARLag1 F3 + F10 + MAlag1 F9 ,
F5 = ARLag1 F4 + F11 + MAlag1 F10,
F6 = ARLag1 F5 + F12 + MAlag1 F11;

STD
e1-e36=ManErr1-ManErr36, F7-F12=6*1;

VAR
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I1T1 I2T1 I3T1 I4T1 I5T1 I6T1
I1T2 I2T2 I3T2 I4T2 I5T2 I6T2
I1T3 I2T3 I3T3 I4T3 I5T3 I6T3
I1T4 I2T4 I3T4 I4T4 I5T4 I6T4
I1T5 I2T5 I3T5 I4T5 I5T5 I6T5
I1T6 I2T6 I3T6 I4T6 I5T6 I6T6;
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