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Multiple Indicator Stationary Time
Series Models
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This article is intended to complement previous research (Sivo, 1997; Sivo &
Willson, 1998, in press) by discussing the propriety and practical advantages of spec-
ifying multivariate time series modelsin the context of structural equation modeling
for time series and longitudinal panel data. Three practical considerations motivated
thisarticle. Unlike Marsh (1993), Sivo and Willson (2000) did not offer multiple in-
dicator (latent order) equivalentsto their autoregressive (AR), moving average (MA),
and autoregressive-moving average (ARMA) models. Moreover, such models have
yet to bediscussed, despite Marsh’s (1993) advocacy for multipleindicator modelsin
general. Further motivating multiple indicator extensions of the AR, MA, and
ARMA equivalent models is the fact that longitudinal studies often collect data on
more than 1 related variable per occasion. Such multiple indicator models capitalize
on 1 of the chief analytical advantages of structural equation modeling in that mea-
surement error may be estimated directly.

Theuse of structural equation modeling (SEM) to evaluate longitudinal panel data
isbecoming increasingly pervasive, with awide variety of investigations focusing
on either stationary or nonstationary multiwave models. Among the general class
of nonstationary models specified to explain the dynamics within longitudinal
data, growth curve models have received a fair amount of attention (see Willett &
Sayer, 1996). Such models may be used to investigate what accountsfor individual
changes over time.

Conversely, stationary model sare used toinvestigate why repeated observations
of the same measure over timefail to correlate perfectly. Among stationary models
specified to depict longitudinal patterns of consistency, simplex and quasi-simplex
models historically have dominated the literature. Indeed, very few alternativesto
thetraditionally posited simplex and quasi-simplex models have been investigated
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and made available. In reaction to the paucity of alternative models, Marsh (1993)
extended thenumber of model stoincludetheone-factor model (relatedtotheclassi-
cal true score model), its multiple indicator equivalent, and the multiple indicator
equivalents of both the simplex and quasi-simplex models. Expanding yet further
the number of stationary modelsavailablefor panel data, Sivo (1997) and Sivo and
Willson (in press) studied and recommended three time series equivalent models,
namely autoregressive (AR), moving average (MA) and autoregressive-moving av-
erage (ARMA) models. Demand for theMA and ARMA models, in particular, was
rooted in thewidely reported finding of correlated errorsin longitudinal panel data
(e.g., Joreskog, 1979, 1981; Joreskog & Sorbom 1977,1989; Marsh, 1993; Marsh&
Grayson, 1994; Rogosa, 1979) and the virtual absence of such models specifically
designed for panel data. Although in recent years, some researchers have demon-
strated how to use SEM to fit time series models to time series data (e.g.,
Hershberger, Corneal, & Molenaar, 1994; Hershberger, Mol enaar, & Corneal, 1996;
vanBuuren, 1997), few researchershavenotably appliedtimeseriesmethodol ogy to
panel datainthesamemanner. A discussion of the use of multipleindicator timese-
ries models for both time series and longitudinal panel datais needed.

Three practical considerations motivated this article. Unlike Marsh (1993), Sivo
and Willson (2000) did not offer multipleindicator (latent order) equivalentsto their
AR, MA, and ARMA models. Moreover, such models have yet to be discussed, de-
spite Marsh’s (1993) advocacy for multipleindicator modelsin general. Further mo-
tivating multipleindicator extensions of the AR, MA, and ARMA equivalent models
isthefact that longitudinal studies often collect data on more than one related vari-
able per occasion. Indeed, this condition does not ipso facto call for amultiple indi-
cator moddl (e.g., the time series process for each manifest variable measured over
multiple occasions might be retained although alternatively integrated together into
one full model). Nonetheless, the availability of such models, once established, of-
fers researchers alternative models for consideration. Arguably, time-dependent la-
tent factors and errors have the potentia to evidence stochastic effects similar to
thosefound among longitudinally assessed manifest variables. Infact, Bollen (1989)
indicated that athough it is traditionally assumed that latent errors (¢) are
nonautocorrelated, corrections for autocorrelated latent errors are common among
econometric models and rarely studied for latent variable structural models. Given
the widely recognized feasihility of autocorrelated latent factor scores, as repre-
sented by the quasi-simplex model (see Joreskog and Sorbom, 1989), its second-or-
der extension (see Marsh, 1993), or an instance of the dynamic shock-error model
(Maravall & Aigner, 1977), it issurprising that no counterpart for autocorrelated la-
tent factor errorsexists. If autocorrelation among factor scores has been found to ex-
istinlongitudinal panel data, the possibility of autocorrelated latent errors should be
considered as a counterpart. Furthermore, multiple indicator models capitalize on
oneof the chief analytical advantagesof SEM in that measurement error may be esti-
mated directly. Thisfeature of SEM hasthe potential of greatly improving on classi-
cal time series modeling.
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This article was written to expand the base of available stationary time series
models for time series and panel data by presenting the specification of multiple
indicator equivalents within the context of SEM. A genera review of time series
modelsis therefore warranted.

Time Series Models

Autocorrelation among serially observed scores (i.e., times series data) is a prob-
lematic condition that potentially biases parameter estimation, although it may be
controlled through explicit modeling. Stationary times series datamay be modeled
for two stochastic processes: AR and MA (Box & Jenkins, 1976). AR modelsrep-
resent the most recent observation in aseriesasafunction of previous observations
within the same series. The most general univariate case is represented by

Vi=@Y1t+t @Yot ... TG Vipt &
wheret =1to T occasions, y; denotes an observed score taken on some occasion (t)
deviated from the original level yo of the series, € denotes error associated with a
givenoccasion(t), and @(—1 < @< 1) denotesacovarianceamongtemporally ordered
scoresat somelag(e.g.,t—1=alagof 1,t—2=alagof 2). Theautocorrelationfunc-
tionof an AR processhasthecharacteristic of tapering off exponentially after thelag
of the process. The multivariate counterpart of this general caseis

Vi=P1Yea + Doyt ... +q3th—p+8t

wherethe parametersare contai ned within the ® matrixes. Following from the gen-
era univariate case, an AR model with alag onerelationship (i.e., AR1) isrepre-
sented by

Vi=@rya t+ &
and has the following multivariate counterpart
Y= @11+ &

(see Appendix). The multivariate AR1 model is a restricted form of the simplex
model (Willson, 1995).

Unlike AR models, MA models represent the most recent observation in a se-
ries as a function of autocorrelated errors among earlier observations. The most
general univariate case is represented by

Vi=& t 016 1+00&0+... + anw

wheret=1toT occasions, y; denotesan observed scoretaken on someoccasion (t) de-
viatedfromtheoriginal level yo of theseries, € denoteserror associated withagiven oc-
casion(t),and 6 (-1 <6< 1) denotesacovarianceamongerrorsat somelag(e.g.,t—1=
alagof 1,t—2=alag of 2). By extension, the multivariate form of thismodel is

Vi= € +0161+0080+ ... +9q£t_q
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wherethe parameters are contai ned within the 8 matrixes. Following from the gen-
eral univariate case, an MA model with alag onerelationship (i.e., MAL) isrepre-
sented by

Vi=¢€t+ €&
with the multivariate counterpart being
Yi=&+ 0181

(see Appendix). An MA 1 model would havetheerror for thefirst occasion correlate
withthesecond occasion error, and the second occasion error correl atewiththethird
occasion error. However, the first occasion error would not be correlated with the
third occasionerror. Thisispossi blewhenauniquecomponentisintroduced oneach
occasion, acomponent that covarieswithasubsequent error but isindependent of the
previous error. Each unique component, jointly with the previous error,
codeterminesthe following error in the series. The net effect of an MA1 processis
that theautocorrel ationfunction cutsoff immediately after lag 1. Put simply, all error
covariancesbeyond thefirst lagwill bezero. Only theerrorson temporally adjacent
0CCasions POssess a nonzero covariance and constitute the MA1 lag.

When both AR and MA processes are present in the same data, an ARMA
model may best represent the variation in the data. The univariate form of the most
genera case of the ARMA model is

Vi=@ Y1t @Yot ...+ @QYept 0181 +028 0+ ... +0qEq+ &
and the multivariate formis
Vi=®P1yra+ Poyio+ ... + PpYip+0181+6282+... +0g€qt&

(see Appendix). The ARMA model with alag onerelationship for bothits AR and
MA processes is represented by

Ve=QLYr1+ €+ 0181
and its multivariate formis
Yi=®P1 Y1+ &+ 01 €1

Harvey (1981) unequivocally pointed out that a multivariate time series
model is founded on a priori assumptions inasmuch as it suggests that the vari-
ables under study are determined jointly. From Harvey’s perspective, the idea of
modeling individual tragjectories in addition to the multivariate trajectory would
amount to a loss in predictive efficiency, especially when the multivariate time
series model is specified correctly. This point cannot be understated and has
great relevance to the contextual scheme of this article because the approach to
be advanced will not consider or advocate the use of univariate time series mod-
els for individual trgjectories. A limited information approach, modeling each
univariate process, is only strategically meritorious when uncertainty exists
about the model as a whole (Harvey, 1981). In such a case, SEM would be un-
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warranted, given that this approach assumes that an asserted model is grounded
theoretically in the first place.

On a more practical note, it should be pointed out that, as Hershberger et al.
(1996) discussed, SAS IML may be used to create the autocovariance and block
toeplitz matrixes necessary so that the multiple indicator SEM specified time se-
ries models may be fit to the multivariate time series covariance data.

The Relation Between Time Series and Longitudinal Panel Designs

A clear connectionhasbeen delineated between time seriesdesignsand longitudinal
panel designsinwhich the same sample of casesisobserved on multipleoccasions.
Rogosa (1979) indicated that “[longitudinal] panel designs are a combination of
time-series and cross-sectional, with measurements obtained on a cross-section
(wave) at eachtimepoint” (p. 275). According to Fredericksen and Rotondo (1979),
“When atime seriesmodel isemployed [with] ... suitabletechniquesfor parameter
estimation and hypothesistesting, theresult isapowerful methodology for the con-
duct of longitudinal research” (p. 112). To be sure, longitudinal datamay betreated
similarly to time series, when (a) the same group of individuals over occasions are
measured (i.e., panel study), (b) the occasionsfor repeated measurements are equi-
distant intime, and (c) enough measurement occasions over time areincluded. Re-
garding thelatter condition, Box and Jenkins (1976) indicated that when modeling
individual trajectories, at least 50 observations are heeded for unambiguous model
identification. Although, if apriori modelscan beassumed (e.g., AR1or MA1), far
fewer observationsareneeded. Sivo and Willson (1998) indicated that asfew asfour
time points are reasonable for fitting AR1 or MA1 models to large-sampl e panel
data, wherein individual performances may be considered replications and cross
time covariancesarethereby morestable. Fiveor six occasionsat minimum arerec-
ommended when testing ARMA (1,1) models.

Fitting Time Series Models to Longitudinal Panel Data

Sivo and Willson (2000) defined the AR1 model for longitudinal panel datain a
manner consistent with time series methodol ogy.

Yt = Bo1 Vi1 + &, t = 1 to T occasions

The equations that define the multipleindicator AR1 model will resemblethe sin-
gleindicator AR1 model, though the AR processis represented among latent fac-
torsinstead of manifest variables.

Vi=Az Nt + €, i =1topvariables

Nt = B21 N1 + &, t = 1 to T occasions
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When specifying amodel to represent an autoregressive process among six la-
tent factors, the matrix equation for the factor relations would be

Ni 0 0 0 0 0O O ni (1
N2 Bo O O O 0 O n2 (2
ns _ 0 [321 0 0 0O O ns n Zg
N4 0O O Bax O O O [n4 Ca
Ns 0O 0 O Ba O O |ns (s
Ne 0 0 0 0 PBa O [ne e

(see Appendix). This model resembles the quasi-simplex model (see Joreskog &
Sorbom, 1989, p. 182), although two differences exist: (a) Each factor determines
multiple indicators, and (b) the betas are constrained to equal the first betain the
series (see Figure 1).

The MA1 model specified for longitudinal panel dataalso assumesaform con-
sistent with time series methodol ogy.

Vi = 021 €1 + &, t =110 T occasions

Because the theta epsilon matrix is symmetrical and the MA1 model requires an
asymmetrical specification among thelag 1 errors, it is useful to define the model
in a manner similar to van Buuren’s (1997) approach. Van Buuren discussed the
use of SEM to estimate univariate time series, and so his general model for a
univariate MA process represents the rel ation between the original series and each
of the hypothesized lags for the series. To specify the asymmetrical relation be-
tween each lag and the origin, van Buuren defined the errors as factors that are re-
lated to the order of somelag. HisMA1 model isspecified by thefollowing CALIS
equations:

Vo = fO + thetal f1
vy = f1l + thetal f2
which may be re-expressed as
Yo=A1N1+nNo
yi=A1nz+n:

Hisuse of the lambdamatrix allows him to make the asymmetrical specification of
alagged relation among the errors, arelation that could not have been asymmetri-
cally specified within a theta epsilon matrix. Similarly, the MA1 longitudinal
model may be expressed as

Vi = A21 Ne-1 + N, t = 110 T occasions
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FIGURE 1 Multipleindicator autoregressive (AR1) model.
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FIGURE 2 Multipleindicator moving average (MA1) model.
In this case, errors across time may be said to correlate at somelag. Again, thisre-
tainsthe original form of the MA1 time series model discussed previoudly:
Yt =&+ 018

The equations that define the multiple-indicator MA1 model will resemble the
single-indicator MA1 model, although the MA process is represented among la-
tent factors instead of manifest variables (see Appendix).

Vi=Ait Nt + €, i = 1topvariables
Nt = Wo1 {11 + i, t = 1to T occasions
Re-expressing the multiple indicator MA process in terms of factorsyields
Nt = Yo1 &1 + &, t = 1 to T occasions

Refer to Figure 2 for adiagram of thismodel. Although the pure multipleindicator
MA model, as specified, is theoretically accurate, it may not seem to make any
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practical sense. If aset of manifest variablesis determined by acommon factor on
each of several occasions, it is challenging to conceive of how an MA process
alone could explain the rel atedness among thefirst-order factors. If an MA process
aloneisresponsible for the relation among the factors, then how could each factor
determine the conceptually related manifest variables in practice? Consequently,
identifying an MA process present within some lag of the latent errors may be
more likely under the condition that the latent factors are otherwise related aswell.
Thisisnot too troubling when it is recalled that the MA processis but a nuisance
condition. Assuch, one would want to model explicitly an MA1 processasaform
of control to remove the bias that the process would otherwise introduce into pa-
rameter estimates for a given model, say, a one-factor model.

Yi=Ait Nt + &, i =1topvariables
Nt = Vi1 &1+ W1 {1 + g, t = 1to T occasions
which may also be expressed as
Nt = VeT+1 &+ + Yo &1 + &, t= 1 t0 T occasions

If the same variables were measured on six occasions, the multiple indicator MA1
process thought to theoretically relate temporally adjacent |atent errors would be
specified by the following matrix equation:

m yvv 10 0 0 o o o] |V
N2 vo ys 10 0 0 0 o||™
| lyw O ys 10 0 o of |
Nl lyw O 0 ys 10 0 of |
Ns ysz O 0 0O vys 10 O =
Ne V¢ O 0 0 0 vy 10 |

N13

Note that the gammas for the second order-factor are also specified in I (see
Figure 3). Although extraneousto theintent of the present investigation, this point
is demonstrated as one practical possibility.

The ARMA (1,1) model specified for longitudinal panel datais expressed by
the following equation:

Yt = B1 Vi + & — 01 &1, t = 1 to T occasions
whereas the multiple indicator equivalent is defined as
Vi = A1 N+ €&, 1 =1topvariables
Nt = B21 Ne—1 + ¢ + P21 {1, t =110 T occasions

Re-expressing the multiple indicator MA processin terms of factorsyields
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FIGURE 3 Multipleindicator moving average (MA1) model with second-order factor.

Nt = B N1 + & + V21 &1, t = 1 to T occasions

which for a six-occasion situation may be expressed by the following matrix
equation:

ml [0 0 0 0 0 Ofm][0 0 0 0o 0 oln
N2 sz_ 0 0 0 0 O N2 Y28 1.0 0 0 0 0 Ns
ns|_|0 Ba 0 0 0 Ofns . 0 ys 10 0 0 Of/ne
Ne| 10O 0 Bx O O Onal |0 0 y 10 0 Ollmo
Ns 0 0 0 BZl 0 O Ns 0 0 0 Y28 10 O N11
nel] |0 0 0 O P2 Ons) (O 0 0 O vy 10|Ne

(see Appendix).
Refer to Figure 4 for adiagram of this model.
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FIGURE 4 Multipleindicator autoregressive-Moving Average (ARMA 1, 1) model.
CONCLUSION

This article described why fitting multiple indicator time series models to time
series and panel data within the context of structural equation modeling is
proper, practicable, and useful. With regard to modeling time series data, the
multiple indicator model specification improves on classical time series analysis
in that it allows measurement errors to be directly modeled, a key feature that
has made SEM more broadly a strategically useful analytical approach. With re-
gard to modeling panel data, the multiple indicator model specification improves
on the work of Sivo and Willson (2000) in that it extends the base of plausible
stationary models recommended for certain types of panel data. Finally, this arti-
cle demonstrates how multiple indicator time series models may be specified by
using SAS's PROC CALIS.
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APPENDIX

Autoregressive (AR) Program

PROC CALIS DATA=P COV ALL;
TITLE ‘AR MODEL: MULTIPLE INDICATOR FORM’;
LINEQS
1171 =LY 11 F1+E1, 12T1 = LY21 F1+E2, I3T1 = LY 31 F1+E3,
|4T1 = LY41 F1+E4, 15T1 = LY51 F1+E5, I6T1 = LY 61 F1+E6,
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11T2=LY11 F2+E7,12T2 =LY 21 F2+E8, I3T2 = LY 31 F2+E9,
14T2 = LY41 F2+E10, I5T2=LY51 F2+E11, 16T2 = LY61 F2+E12,
11T3=LY11 F3+E13, 12T3=LY21 F3+E14, I3T3 =LY 31 F3+E15,
4T3 =LY41 F3+E16, I5T3=LY51 F3+E17, I6T3 = LY61 F3+E18,
11T4 = LY 11 F4+E19, 12T4 = LY 21 FA+E20, 13T4 = LY 31 F4+E21,
14T4 = LY 41 F4+E22, 15T4 = LY51 F4+E23, 16T4 = LY 61 F4+E24,
11T5 =LY 11 F5+E25, 12T5 = LY 21 F5+E26, 13T5 = LY 31 F5+E27,
14T5=LY41 F5+E28, I5T5 = LY51 F5+E29, 16T5 = LY 61 F5+E30,
11T6=LY11 F6+E31, 12T6 = LY 21 F6+E32, I13T6 = LY 31 F6+E33,
14T6 = LY41 F6+E34, I5T6 = LY51 F6+E35, 16T6 = LY 61 F6+E36,
F2 = ARlagl F1+D1,
F3 = ARlagl F2+D2,
F4 = ARlagl F3+D3,
F5 = ARlagl F4+D4,
F6 = ARlagl F5+D5;
STD
el-e36=ManErrl-ManErr36, D1-D5=ZetaErrl-ZetakErrs, F1=1;
VAR
11T1I12T113T114T1I5T116T1
11T212T213T214T215T216T2
11T312T313T314T315T316T3
11T412T413T4 14T415T416T4
11T512T513T514T515T516T5
11T612T613T6 14T6 I5T6 16T6;

Moving-Average (MA) Program

PROC CALIS DATA=P COV ALL:
TITLE ‘MA MODEL: MULTIPLE INDICATOR FORM’;

LINEQS
1171 = LY11 F1+E1, 12T1 = LY21 F1+E2, 13T1 = LY 31 F1+E3,
|4T1 = LY41 F1+E4, 15T1 = LY51 F1+E5, 16T1 = LY 61 F1+E6,
1172 = LY 12 F2+E7, 12T2 = LY 22 F2+ES8, 13T2 = LY 32 F2+E9,
14T2 = LY 42 F2+E10, I5T2 = LY52 F2+E11, 16T2 = LY 62 F2+E12,
1173 = LY 13 F3+E13, 12T3 = LY 23 F3+E14, 13T3 = LY 33 F3+E15,
14T3 = LY 43 F3+E16, I5T3 = LY53 F3+E17, 16T3 = LY 63 F3+E18,
11T4 = LY 14 F4+E19, 12T4 = LY 24 FA+E20, 13T4 = LY 34 FA+E21,
|4T4 = LY 44 FA+E22, 15T4 = LY 54 FA+E23, 16T4 = LY 64 FA+E24,
1175 = LY 15 F5+E25, 12T5 = LY 25 F5+E26, 13T5 = LY 35 F5+E27,
14T5 = LY 45 F5+E28, I5T5 = LY 55 F5+E29, 16T5 = LY 65 F5+E30,
11T6 = LY 16 F6+E31, 12T6 = LY 26 F6+E32, 13T6 = LY 36 F6+E33,
|4T6 = LY 46 F6+E34, 15T6 = LY 56 F6+E35, 16T6 = LY 66 F6+E36,
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F1=F7,
F2 = MAlagl F7 + F8,
F3=MAlagl F8 + F9,
F4 = MAlagl F9 + F10,
F5 = MAlagl F10 + F11,
F6 = MAlagl F11 + F12;
STD
el-e36=ManErrl-ManErr36, F7-F12=6*1;
VAR
11T1I12T1I3T114T1I5T116T1
11T212T213T214T215T216T2
11T312T313T314T315T316T3
11T412T413T4 14T415T416T4
11T512T513T514T515T516T5
11T612T613T6 14T6 I15T6 I16T6;

Autoregressive Moving-Average (ARMA) Program

PROC CALISDATA=P COV ALL;
TITLE ‘ARMA MODEL: MULTIPLE INDICATOR FORM’;
LINEQS
11T1=LY11 F1+E1, I12T1=LY21 F1+E2, I3T1 = LY 31 F1+ES3,
14T1=LY41 F1+E4, I5T1 = LY51 F1+E5, I16T1 = LY 61 F1+ES6,
11T2 =LY 11 F2+E7, 12T2 = LY 21 F2+E8, I3T2 = LY 31 F2+ED9,
14T2 =LY 41 F2+E10, I5T2 = LY51 F2+E11, 16T2 = LY 61 F2+E12,
11T3=LY11 F3+E13, 12T3 =LY 21 F3+E14, 13T3 =LY 31 F3+E15,
4T3 =LY41 F3+E16, I5T3=LY51 F3+E17, I6T3 =LY 61 F3+E18,
11T4 =LY 11 F4+E19, 12T4 = LY 21 F4+E20, 13T4 = LY 31 F4+E21,
14T4 = LY 41 FA+E22, I15T4 = LY51 FA+E23, 16T4 = LY 61 FA+E24,
11T5 =LY 11 F5+E25, 12T5 = LY 21 F5+E26, 13T5 = LY 31 F5+E27,
I14T5 =LY 41 F5+E28, I5T5 = LY51 F5+E29, 16T5 = LY 61 F5+E30,
11T6 =LY 11 F6+E31, 12T6 = LY 21 F6+E32, 13T6 = LY 31 F6+E33,
14T6 = LY 41 F6+E34, I5T6 = LY51 F6+E35, 16T6 = LY 61 F6+E36,
Fl1=F7,
F2=ARLagl F1+ F8 + MAlagl F7,
F3=ARLagl F2+ F9 + MAlagl F8,
F4=ARLagl F3+ F10 + MAlagl F9,
F5=ARLagl F4 + F11 + MAlagl F10,
F6 = ARLagl F5 + F12 + MAlagl F11;
STD
el-e36=ManErrl-ManErr36, F7-F12=6* 1,
VAR

611



612 SIVO

[1T1I2T1I3T114T115T116T1
11T212T213T214T215T216T2
[1T312T313T314T315T316T3
[1T412T413T414T415T416T4
[1TSI2T513T514T515T516T5
I1T612T613T614T615T6 16T6;



